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Abstract 

A focusing monochromatic X-ray single-crystal tech- 
nique (Noromosic technique) is applied to investigate 
shape and interference phenomena of multiply scat- 
tered X-ray reflections. It is shown that this technique 
allows for rapid elimination of spurious 'peaks' caused 
by coherent or incoherent multiple-scattering processes 
(Umweganregung). No rotation of the crystal around 
the reciprocal vector in question is necessary. Further- 
more, it is shown that phase determination can be done 
in principle if two secondary reflected beams are 
brought to interference within the crystal. This may 
generally be realized in the n-beam case of diffraction 
(n ___ 4) by changing the wavelength or the lattice 
geometry. The method is applied to a-phenazine, 
C,2HsN2, where four- and six-beam cases occur 
accidentally without a variation of the wavelength. It is 
shown that phase determination is possible even in such 
cases where a certain mosaic spread of the crystal is 
unavoidable. 

I. Introduction 

Accurate structure determination strongly depends on 
reliable corrections of I F(hkl)l. It is well known that 
the correction for extinction causes difficulties in 
multiple scattering, which generally occurs if more than 
one reflection is excited simultaneously by the primary 
beam, although in principle this problem may be solved 
experimentally by rotating the crystal around the 
normal of the reflecting plane (hkl). In order to deter- 
mine precise electron densities, the phases of the 
reflections - even of the weak ones - must be known 
accurately; this specifically holds for non-centro- 
symmetric crystals. It will be shown in the following 
that all these difficulties may be overcome in part by 
applying a diffraction technique that has already been 
published (Jagodzinski, 1968). This method provides a 
means for rapid correction of measured peak intensities 
caused by multiple scattering of secondary reflections. 
An experimental method for phase determination of 
strong and weak F(hkl) is also possible. 
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In a preliminary communication the author has pub- 
lished some of the most important results (Jagodzinski, 
1978). It will be shown in this paper that the method 
used here is applicable even to imperfect crystals. 
Recently, Post (1979) has published some experi- 
mental results on interference in the so-called three- 
beam case, using perfect Ge and ct-A120 3 crystals. A 
different experiment on interference in the three-beam 
case has been published by Collela (1974), but the con- 
clusions drawn from it, and the experimental method 
were criticized by Post (1975), and the author agrees 
that the experiment was not well suited to phase deter- 
mination. It will be shown in the following article that 
the four-beam case is best suited for a successful deter- 
mination of phases; unfortunately, an X-ray source 
with intense white radiation is needed unless the four- 
beam case can be realized by accidental geometrical 
symmetries of the reciprocal lattice, which need not be 
symmetries of the crystal. The theory of the four-beam 
case has been developed by Ewald & Hrno (1968; 
H~no & Ewald, 1968), unfortunately, it cannot be 
applied to the diffraction geometry used in an experi- 
ment which is sensitive to the boundary conditions 
introduced. Therefore, an extension of the theory is 
needed in order to give a full interpretation of the inter- 
ference patterns observed. In spite of the fact that the 
final solution of this diffraction problem can only be 
given with the aid of the dynamical theory of scattering, 
a qualitative approach to the interpretation of the 
diffraction pattern will be given here by using pseudo- 
kinematic arguments, but keeping in mind that this kind 
of approach can be no more than a first approximation 
to the final dynamical solution. 

2. Experimental method 

All experiments have been done with strictly mono- 
chromatic Cu Ka, radiation produced with the aid of a 
bent quartz single-crystal. Generally, we used large 
single-crystals as samples in order to observe the pro- 
pagating waves within the crystal. The experimental X- 
ray equipment was an evacuable oscillation camera; 
the focusing principle and its resolution power has been 
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described previously by the author (Jagodzinski, 1968). 
Fig. 1 shows the diffraction geometry realized in our 

experiment. According to Fig. l(a) each volume 
element of the big crystal receives a small angle of 
aperture in the vertical direction, as determined by the 
monochromator (~ 1', this angle is mainly due to the 
inaccuracy of the wavelength A2), but a rather large 
one (~1 °) in the horizontal direction. Since strictly 
monochromatic radiation (20) is used, only parallel 
beams within the horizontal angle of aperture are 
effective for Bragg reflections of a standing crystal (Fig. 
la). All volume elements lying on a vertical line (Fig. 
lb) continuously reflect 20 by rotating the crystal. The 
full and the broken lines in Fig. l(b) indicate the 
angular range of diffraction given by the angle of 
aperture. 

The focusing condition of reflections scattered by the 
incident beam s o in the equatorial plane is shown in Fig. 
2. Since diffraction may be described by the correspon- 
ding Kossel cones, reflection takes place for each 
volume element of the crystal regardless of its height, 
and the reflection is focused in the zero layer line on the 
film. The line width in the vertical direction of 
reflections in the zero layer line is mainly determined by 
the monochromator. In the horizontal direction the line 
width is given by the width of the beam (Fig. l a) and 
the horizontal angle of aperture (Fig. lb), which may 
be calculated from the effective length of the line focus 
of the X-ray tube as limited by B (Fig. lb). This is valid 
as long as the size of the crystal does not impose 
another limitation. In our experiment the size of the 
crystal was large when compared with the dimensions 
of the X-ray beam. Obviously, this method applied to a 
standing crystal is equivalent to an oscillation of the 
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(b) 
Fig. 1. Diffraction geometry in the Noromosic technique. (a) The 

line focus of the monochromator M is placed horizontally on the 
film F. The vertical angle of aperture for each volume element is 
small. A plane section through the crystal is shown only. (b) A 
large horizontal angle of aperture is available, but a small part 
only is effective for Bragg scattering. The full and broken lines of 
the beams represent the two extreme positions for Bragg 
reflection in a vertical row of volume elements. 

crystal by an angle equal to the horizontal aperture in 
the parallel-beam method (Noromosic technique). The 
accuracy and the formal oscillation angle is deter- 
mined by the horizontal angle of aperture, while the 
vertical one does not have any influence on the 
resolution power. 

Let us now assume that two reflections are scattered 
simultaneously (three-beam case), the diffraction con- 
dition may then be best described by two crossing 
Kossel cones. Consequently, the angle of aperture 
effective for multiple scattering (secondary reflections) 
is small, while the primary reflections may take up the 
larger angle of aperture corresponding to their in- 
dividual Kossel cones. This is shown in Fig. 3, where 
it has been tacitly assumed that the two Kossel cones 
meet precisely in the equatorial plane. 

The Ewald conditions valid in this case are 

h 1 = ( s  1 - -  S o ) / 2 ,  h 2 = ( S  2 - -  $ 0 ) / 2  ( l a )  

(primary reflections), and it may be seen that 

h l - h  2 = ( s  1 - s 2 ) / 2  , h2 - -h  l = ( s  2 - s l ) / 2  
(lb) 

(secondary reflections) are satisfied also. Equations 
( la)  and (lb) mean that the two primary reflections s 1 
and s 2 excited by s o generate secondary reflections 
scattered in the directions s 2 and s 1, respectively. As 

K o s s e l  c o n e s  

Fig. 2. Explanation of the focusing condition with the aid of Kossel 
cones, s o and s~ are the directions of the incident and reflected 
beams, respectively. 
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Fig. 3. In the case of multiple diffraction a secondary reflection can 
be generated in a small range of the angle of aperture only. The 
crossing of two Kossel cones is represented by the central line AB 
showing the effective part of s 0, which generates a primary 
reflection (s~) capable of producing a secondary reflection (s2). 
The cross-hatched area ABC represents the volume irradiated by 
S 1 • 
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shown in Fig. 3, this condition is satisfied only for a 
small part of the crystal (line AB). Now, the complete 
explanation of multiple scattering is given by remem- 
bering that the primary reflection s~ (and s2!) propa- 
gates according to its Bormann fan, generally describing 
the propagation of wave fields in the interior of the 
crystal. Therefore, s~ covers a much larger volume (rep- 
resented by the area ABC in Fig. 3) than the part AB of 
the primary beam, effective for multiple diffraction. It is 
assumed here that s~ may well be described by a plane 
wave, then the whole volume irradiated by s~ causes the 
secondary reflection s2 shown in Fig. 3 (the primary 
reflection s2 generated by so is not shown in this figure). 
Let us now refer to the case relevant to this paper, 
where the experimental geometry is such that the center 
of the primary beam is in the plane of symmetry of a 
monoclinic crystal. Here the three-beam case is realized 
anyway by the symmetry condition. Both F(hkl) and 
F(hkl) are reflected simultaneously, if the crystal is 
oriented parallel to [010] of the oscillation camera 
(Fig. 1) and k :/: 0 (non-equatorial reflection). The 
diffraction geometry for secondary reflections may then 
be represented as shown in Fig. 4. 

Although s~ and s 2 are generated by a larger angle of 
aperture, only a small angular part of s o generates the 
appropriate parts of beams s~ and s 2, effective for 
secondary reflections. Furthermore, it should be noted 
that the part of s o falling outside the plane of symmetry 
may generate single primary beams s~ or s 2 only. Con- 
sequently, extinction should be appreciably higher for 
the partial beam in the plane of symmetry. The shape of 
the volume irradiated by the two primary beams s~ and 
s 2 for a rectangular crystal block is a fat-type 'arrow', 
spearheading at its entrance (Laue case) into the 
crystal. It changes slightly when the incident beam s o is 
inclined to the frontal surface of the block. Now it may 
easily be seen why interference may not be observed in 
this case; as long as the primary beam is much stronger 
than the secondary one (and this was true in our experi- 
ment), the intensity of the primary beam, although 

_st s__l 

So 
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Fig. 4. The three-beam case in our diffraction technique. Only the 
primary reflections s 1, s2 are shown. Secondary reflections are 
scattered in both directions, but the whole volume irradiated by 
the two primary reflections contributes to the secondary 
reflections. 

generated by a smaller volume, prevents the obser- 
vation of interference effects. There would be a definite 
chance if one of the two primary scattered reflections 
had a much lower intensity. This cannot be realized in 
symmetrically equivalent reflections. The situation 
changes drastically when a third reflection in the plane 
of symmetry F(hOl) meets the Ewald sphere simul- 
taneously. In order to facilitate the understanding of the 
diffraction phenomena, the band of the incident beam 
s o is represented by a single line only in Fig. 5. 

Each of the directions s 0, s~, s2, s3 now contains 
three contributions, one primary reflection (generated 
by s o ) and two secondary ones, excited by the 
remaining two of the three primary reflections s 1, s 2, s 3. 
In Fig. 5 this situation is shown when s 3 falls into the 
zero layer line. The whole diffraction pattern may now 
be constructed: 

(a) by superimposing the various parts of the band 
effective for multiple scattering according to Fig. 4; 

(b) by remembering that the remaining part of the 
primary beam s o generates the primary reflections in 
the zero layer line as well, where it is fully focused. 

A typical diffraction pattern of this type is shown in 
Fig. 7, which will be discussed below. The picture of the 
two primary reflections, s~ and s 2, is projected onto the 
film by two secondary reflections generated by s] and s 2 
in the direction %. Interference would be possible in 
that part of the diffraction pattern where the two wings 
of s~ and s 2 overlap. Unfortunately, here, the primary 
reflection, the intensity of which is even more increased 
by the focusing effect, is strongly overexposed. 
Although the latter effect may be reduced by diminish- 
ing the vertical angle of aperture (compare with Fig. 1), 
it remains strong as long as the F(hkl) in question is 
not extremely small (e.g. accidental or systematic 
absences). 

The shape of the reflection in Fig. 7 clearly shows 
that the contribution of secondary reflections to the 
primary one may well be separated by taking a 
photometer record of the whole reflection vertical to the 
sharp primary peak. Apparently this procedure may 
also be applied to diffractometers of any kind, if the 

F 
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Fig. 5. The geometry of the four-beam case and the explanation of 
the shape of secondary reflections. The line of s o represents a 
'band'. Correspondingly, the other directions of diffraction have 
to be supplemented. 
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Noromosic technique is extended to diffractometers. It 
should be pointed out here that multiple scattering 
takes place more frequently than generally assumed, 
and high-resolution techniques using small angles of 
aperture enhance the effect of secondary reflections 
considerably. Therefore, the present diffractometer 
techniques are not optimal for a reliable record of weak 
reflections. The Noromosic technique has the advan- 
tage of admitting large angles of aperture without 
diminishing the high resolution power and without 
increasing the danger of a completely wrong intensity 
measurement. On the other hand, crystals of a 
minimum size are needed in order to rule out the 
secondary reflections from the primary ones. Since the 
width of reflections may be reduced to less than 0-05 
mm, a crystal size of approximately 0.2 mm would be 
sufficient to carry out this procedure. Since crystals of 
this size are very often available, the only limitation 
could be a high absorption coefficient. Finally, the 
geometry of the six-beam case, which is particularly 
important for a-phenazine, is shown in Fig. 6, which 
will be discussed below. 

3. Interference patterns in ot-phenazine 

The interference experiments, as described in this 
paper, were initiated by a collaboration between 
Professor Hausser and Mr Zimmermann, Heidelberg. 
Schuch, Stehlik & Hausser (1971)found very strange 
behavior in certain single crystals of a-phenazine, 
C12HaN2, in their experiments on optical nuclear 
polarization, which seemed to be correlated with an 
unknown anomaly of the structure. Crystals of differ- 
ent quality exhibited a change of their spectra as a 
function of their orientation of the magnetic field. X-ray 
investigation revealed a correlation of this effect with 
the mosaic spread of the crystals (Hausser, 1979). 
Fortunately, many crystals with different mosaic 
spread were synthesized by growing them from the 
vapour phase or from the melt; the latter crystals 
generally were of lower quality. Although crystals of a 
considerable size were used (plates 1-2 mm in length 
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Fig. 6. Overlapping areas of secondary reflections in the six-beam 
case of multiple scattering. Compare with Figs. 4 and 5. 

and 0.5-1 mm thick), the penetration of the Cu Ka~ 
radiation was quite satisfactory, such that the intensity 
of the primary beam was reduced to no more than 
50%. The intensities of the strongest primary and 
secondary reflections differed by about three orders of 
magnitude (103). This could be checked by estimating 
the exposure time of the primary b e a m  and the 
strongest primary and secondary reflections. Since the 
cross section for absorption in a-phenazine is lower 
than the cross section for coherent elastic scattering, 
the same experimental conditions may not be realized 
for Si and Ge crystals predominantly used in former 
experiments. For this reason we may conclude that the 
interference phenomena observed by us are not caused 
by the well-known enhanced Borrmann effect, as 
reported by Huang & Post (1973) and Kshevetsky & 
Mikhailyuk (1976). Naturally, the diffraction con- 
ditions valid in the interior of a-phenazine have to be 
determined by using the dispersion surfaces of the 
dynamical theory of diffraction. Fortunately, the 
refraction index 1-An is very near to unity in the case 
of a-phenazine where An ~ 3 x 10 -5. Since the angular 
resolution power of the camera is not very large (the 
diffraction conditions given by the crystal excepted), all 
angular corrections may be neglected. 

a-Phenazine crystallizes in space group P2Ja, and 
its structure has been determined and discussed by 
Herbstein & Schmidt (1955a,b). Hirshfeld (1955) 
reported on the unusual forbidden reflection 500, but 
the conclusions drawn regarding phase determination 
were unsatisfactory. Since the space group demands 
the extinction rule 

F(hOl) = 0 if h = odd, 

there are many systematic absences in the zero layer 
line of a rotation or oscillation photograph with [010] 
as rotation axis. At the beginning of our experiments 
we noticed that the forbidden 500 reflection was very 
sensitive to the quality of the crystal. Consequently, we 
concluded that the unusual multiple diffraction is an 
effect of the mosaic spread of the crystal, which here 
shall be called 'incoherent multiple diffraction'. Sys- 
tematic studies of absent reflections (hOl) with the aid 
of the Noromosic technique revealed that a lot of 
forbidden reflections can be observed. But a careful 
check of the geometry of such accidental coincidences 
revealed that, once the condition of the coherent or 
incoherent multiple scattering is realized accidentally 
for a crystal of low symmetry, similar coincidences of 
reflections may occur very frequently for other settings 
of the crystal using the same wavelength. A more 
detailed explanation of this fact will be given below with 
the aid of coincidences caused by accidental geo- 
metrical proportions of a-phenazine. 

Multiple diffraction has been observed for seven 
(hOl) reflections, five of them belonging to the svs- 
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tematically absent ones as described by the extinction 
rule of the space group P21/a mentioned above. 

Table 1 gives the angular positions for the crystal 
K l l ,  which was not too perfect. Obviously these 
reflections do not appear simultaneously, although they 
are observed in the very narrow angular range of 3 ° 
approximately. Multiple diffraction in the four-beam 
case takes place when four points of the reciprocal 
lattice meet the Ewald sphere simultaneously. This can 
generally be realized by changing the radius (1//l) of the 
Ewald sphere. If these four reciprocal-lattice points lie 
in the same reciprocal plane, they belong to the same 
zone [uvw]. The intersection of the common reciprocal 
plane and the Ewald sphere is a circle. Therefore, it is a 
necessary prerequisite that they lie on the circum- 
ference of a common circle. Consequently, it may be 
concluded that the coincidence takes place for all wave- 
lengths as long as the radius of the said circle is smaller 
than that of the Ewald sphere. This particular case is 
realized in a-phenazine twice. If the four reciprocal- 
lattice points do not belong to the same zone, the wave- 
length has to be varied in order to meet the diffraction 
conditions simultaneously as already mentioned above. 

In ct-phenazine 

000, 421, 421,802, (zone [104]) 

are almost on the same circle, and the same is true for 
the two equivalent groups 

000, 310, 3[0, 210, 2[0, 500/ 

000, 310, 3[0, :210, 2[0, 500 J zone [001]. 

But it should be emphasized that this coincidence is not 
due to the symmetry of the crystal. As we will show 
below, there is indeed a big difference in the character 
of multiple diffraction of these two groups. Now it may 
easily be shown by considering the lattice geometry 
that non-planar coincidences are possible on the same 
Ewald sphere for other reciprocal-lattice points of the 
same lattice. For this reason, a-phenazine represents a 
very fortunate case for studying multiple-diffraction 
phenomena without changing the wavelength of X- 
rays. In our experiment Cu Kal radiation has been 
used. Naturally it is most probable that the circle or 

Table 1. Positions of secondary reflection observed in 
K l l  

The cross (x)  indicates the optimal position of  the secondary 
reflection. The same relative angles are observed in the other 
crystals discussed in this paper. 

Angle (°) 300 

312.5 I 
313 II 
313.5 II × 
314 II 
314.5 I 
315 

304 1-i,0,2 Angle (°) i03  500 804 802 

276.5 I I × 
277 I II 

x 
I 277.5 I II L 
I×  x 
I 278.5 I LI 

I Ix  I Ix  

sphere condition for reciprocal-lattice points is not 
satisfied exactly. Since the propagation of waves in the 
interior of the crystal has to be described by their dis- 
persion surfaces rather than the Ewald sphere, it does 
not seem worthwhile to have a more detailed discussion 
on possible deviations using the kinematic approxi- 
mation. New, accurate experiments have to be done by 
changing the wavelength or the lattice geometry (e.g. 
by thermal expansion) in order to meet the optimal con- 
ditions for exciting waves. Curious interference 
phenomena have already been reported by Renninger 
(1978) for diffraction angles deviating from the Bragg 
condition in the two-beam case, and there is no doubt 
that similar effects have to be expected in our experi- 
ments. All crystals used here were plates parallel to 
(001) of approximately 0.5-1 mm thickness, the other 
dimensions were 2-4 mm. Consequently, the primary 
beam was 'bathed' by the crystal. But it should be 
pointed out that in spite of its large size the crystal was 
more or less transparent, since no shadows of the 
diffuse background due to absorption (plates!) could be 
observed; obviously the absorption coefficient is very 
small (/1 _ 6.5) and we should remember, that g is 
much larger (by a factor of 25) in the case of Si. 

We have already discussed the fact that we expect an 
arrow-like shape for secondary reflections. Since our 
observations are generally restricted to intense primary 
reflections, nearly all of them will probably belong to 
the same group of strong peaks. 

Table 2 gives the necessary information on the 
directions of the primary beam (in reciprocal coordin- 
ates x* a* + z* b* of the center of the Ewald sphere, 
opposite direction to the incident beam), and the angle 
~,' discussed below. Table 2(b) shows that the second 
group occurs at a nearly vertical incidence of the (001) 
surface of the crystal (x* is small), while 2(a) indicates 
an inclined angle. As may be concluded from the angles 
given in Table 1, this angle of inclination amounts to 
approximately 37 ° . Since all multiply scattered reflec- 
tions occur in a very small angular range the reader gets 
a clear idea of the beam geometry. The diffraction 
angle is determined by the layer-line angle ~ and the 
azimuthal angle (p. Table 3 shows, for primary reflec- 
tions, whether the beams belong to the Laue (L) or 
Bragg (B) case, and gives their azimuthal scattering 
angles. 

Most of the multiple diffractions belong to the Laue 
case, except 804 and 304, but the primary reflection is 
absent in the case of 304. Now the angle ~,' at the point 
of the arrowhead may be determined according to the 
equation 

tan ~,'/2 = tan ~/sin(tp2 -- (Pl), (2) 

this angle is given in Table 2 and compared with the 
corresponding angles observed experimentally. Table 2 
also contains the kinematic reflection intensities of 
primarily and secondarily reflecting planes. By assure- 
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Table 2. Position of  the center o f  the Ewald sphere according to the Bragg condition given in reciprocal coordi- 
nates x*, z* (x* a* + z* e*), and angle~' at thepoint of  the arrow 

Estimated intensities are listed as follows: vvs  = extremely strong; vs = very strong; s = strong; m = medium; v w  = very weak; w = weak. 

(a) Reflection group associated with 500 

Strong primary 
reflection 

Extinguished primary 
reflection 

500 
- 5 . 2 0 ;  4.38 

304 
- 5 - 2 8 ; 4 . 3 7  

11,0,2 
- 5 . 4 4 ;  4.33 

(b) Reflection group associated with 500 

Strong primary 
reflection 

210 vs J 10 vvs  211 vs Observed angle 
- 5 . 2 1 ;  4.39 - 5 . 2 0 ;  4.37 - 5 . 2 6 ;  4.37 q/', cf. equation (2) 

i0 vvs 210 vs ~ i i w qt' fluctuating 
83 o 105 o 41 o ~ 90 o 

514 m 654 w 153 m-s o.k. 
36 ° 36 ° 51 o 38_40 ° 

912 w 812 m 1-3,i,1 vw o.k. 
39 ° 42 ° 36 ° 44 ° 

210 vs 310 vvs  421 vs Observed angle 
- 0 . 1 9 ;  4.38 - 0 . 1 9 ;  4.37 - 0 . 3 9 ;  4.41 ~',  e f  equation (2) 

Extinguished or weak 
primary reflection 

500 3 f0 vvs  250 vs 121 w fluctuating 
- 0 . 2 0 ;  4.38 83 o 105 ° 179 o ~ 108-110 o 

703 913 w 1-0,1,3 m 1-L2,2 vw o.k. 
-0-115; 4.37 38 ° 37 ° 75.1 o 37.5 ° 

804 614 w 514 m 423 w o.k. 
-0-30; 4.40 36 ° 36 ° 82 ° 35 ° 

802 652 vw 552 m 421 o.k. 
--0.39; 4.41 40 ° 43 ° 104 ° 99 ° 

Table 3. Characterization of the diffraction geometry 
of  primary reflections 

L = Laue case, B = Bragg case, ~0 t = azimuthal angle. 

Indices L, B ~0 t (o) Indices L, B tp I (0) 

310 L +21 310 L --21 
210 L +14 210 L --14 
421 L +39 211 L +23 
500 L +35 500 L - 3 5  
802 L +76 11,0,2 L --78 
804 B + 102 304 B +65 
703 L - 5 4  

ing that the product F(h~ k~ l~) x F ( h  2 k 212) determines 
the intensity of the secondary reflection it may be 
decided which pair is the most importantone.  With the 
exception of 500, and to some extent 11,0,2 also, the 
agreement is quite satisfactory. Since the Borrmann fan 
in the dynamical  theory obeys Bragg's equation 
approximately, the deviation for 500 is astonishing. 
One possible explanation might be that the list of 
exciting primary reflections is not complete. In fact, 
there are many other weaker primary reflections 
observed and even the weaker ones may be involved if 

the secondary ones belong to the group of strong 
reflections. S__urprisingly, from Table 2, the secondary 
reflections 11,0,2, 304, and "703 should be excited by 
the group 210, 2 i0 ;  310, 310 or 210, 2 i0 ;  310, 3 i0 .  A 
comparison of their angular positions in Tables 1 and 2 
(x*,z*) shows clearly that 11,0,2 especially does not 
satisfy the diffraction condition of the kinematic theory. 
This holds for the angle at the point of the arrow ~,' as 
well. Apparently, the same is true for 500 and 500. 

Let us now discuss a 'normal '  diffraction pattern 
given for the reflection 802 in Fig. 7(a). The diffraction 
scheme is given in Table 4. In the direction s 3 where the 
primary reflection 802 is observed the secondary 
reflections occur, generated by the primary reflections 
421 and 421, which are both very strong. Obviously, 
the lower wing represents the first, and the upper wing 
the second one. In the overlapping area of both, the 
focused primary reflection 802 is observed with very 
high intensity, although 802 belongs to the group of 
weak reflections of a-phenazine. As indicated in Table 
3, nearly all reflections involved belong to the Laue 
case. Hence, the primary wave fields propagate into the 
interior of the crystal (the fluctuation in intensity is due 
to the mosaic structure of K 11). Fig. 7(b) shows the 
same reflection of K11 in a photograph where the 
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crystal is rotated by 0.5 ° approximately, such that 804 
is now primarily excited, but it can clearly be seen that 
804 is again accompanied by secondary reflections, 
which apparently (angle ~,') are excited by 310 (and 210 
probably), although there is a clear deviation from the 
Ewald sphere. Since 804 (primary reflection) belongs to 
the Bragg case (cf. Table 3), the generation of the 
primary and secondary beam is different! In spite of 
this, the focusing condition for the primary reflection is 
satisfied (as demonstrated in Fig. la). We get a (very 
weak) primary reflection, while the secondary one is 
now a single wing, represented by two diffraction lines. 
The asymmetric behaviour is due to a slight misadjust- 
ment of the crystal. This indicates clearly that the 
boundary conditions play an important role in the 
propagation of the wave fields in question. Although 
Table 2 tells us that only one reflection, namely 421, 

has sufficient intensity to be a possible partner to 
generate 802, the secondary reflection again is very 
sensitive to the slight misadjustment of the crystal. It 
will be shown later that this effect could be explained by 
an incomplete Borrmann fan, which may happen when 
the conditions for multiple scattering are met inade- 
quately. 

Table 4. Diffraction scheme of  primary and secondary 
reflections in the four-beam case 802 

Exciting beam s o s I s 2 s 3 

Diffracted beam 

s o - -  4 2 i  4 2 i  8 0 2  

s I 421 - -  040 42| 
s 2 421 040 - -  4 2 1  

s 3 802 421 421 - -  

(a) 

(b) 
Fig. 7. Secondary reflections hOl in cases where the primary beam is not absent, hOl with h = 2n (Kl 1). (a) 802. Magnification 20 x. 

(b) 804 and 802 (0.5 o off optimal position). Magnification lOx. 
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Fig. 8(a), (b), shows the extinguished reflection 11,0,2 
for a very perfect crystal, K9 (8a), and the imperfect 
crystal K 11 (8b). Both pictures are taken with the same 
magnification (20x). No focused primary reflection 
may be detected, indicating that the extinction rule is 
strictly obeyed in a-phenazine. Again, the two wings of 
the Borrmann fan are clearly seen, but there are 
apparently interference effects on them and a small, 
bright line is visible between the two wings. In the 
kinematic approximation this bright line may be 
explained as follows. According to Table 2 the most 
p_robable pairs generating the secondary reflections 
11,0,2 are 310, 812 and 3i0,  812 (upper and lower 

wing, respectively). According to the symmetry of the 
space group 

F(hkl)  = F(hkl)  i f  h + k = 2n, 

F(hkl)  = - F ( h k l )  i f  h + k = 2 n  + 1. 

Therefore, 310 and 3 i0  have the same, but I]i2 and 
~]12 opposite signs. Consequently, the two secondary 
reflections have opposite signs and should be ex- 
tinguished in the overlapping area of propagation. Since 
both pairs belong to the same generation of wave fields, 
this condition should be valid in the dynamical theory 
as well. In the kinematic approximation a primary and 
secondary wave field cannot interfere because of the 
very low amplitude of the secondary wave field when 
compared with the primary one (exception: primary 
waves almost extinguished). Consequently, it may well 
be understood that the bright line is rather insensitive to 
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• .,• "o 

• ° ~  ° 

(b) 

Fig. 8. Secondary reflections 11,0,2, primary reflection absent (h = 
2n + 1). (a) K9 (mosaic spread is small). (b) K l 1 (medium 
mosaic spread). Magnification 20x.  

(b) 

Fig. 9. Secondary reflections 304 for crystal K9 (perfect). (a) 
Optimal setting. (b) Rotated by 0-5 ° off optimal setting. 
Magnification 20x.  
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the mosaic spread which apparently is much larger in 
K 11. It should be noted that the thickness of the plate 
(001) K11 was about half the thickness of the perfect 
crystal K9. 

Fig. 9 shows a pair of secondary reflections 304 of 
the perfect crystal K9. The primary reflection 304 
(Bragg case) is extinguished. The similarity of the 
11,0,2 and 304 is striking, indicating that our effect is 
of much more general validity than expected. Fig. 9(b) 
shows the same bright line as Fig. 9(a), but again the 

Fig. 10. Secondary reflection i03, crystal K14 (medium mosaic 
spread). Magnification 20x. 

interference picture of the wings is sensitive to the 
angular setting. It should be pointed out that the bright 
line in the overlapping range of the two wings may be 
detected in K l l  too. Finally, Fig. 10 shows the 
reflection "103 with a similarly close agreement with 304 
and 11,0,2. The crystal K14 used for this picture had a 
mosaic spread between those of K9 and K 11. 

4. Reflections 500 and .~00 

T h e  secondary reflections 500 and 500 show very 
unusual behavior as has already been concluded from 
Table 2, where it has been pointed out that the 
theoretical angle ~' at the head of the arrow was not 
realized, although there is no doubt that this most 
intense pair is generated by the four pairs 210 3 i0, 310 
2i0, and 3f0 210, 2 i0  310, respectively. Since the 
secondarily reflecting planes also act as primary ones 
(situation as described for 802), we have a similar six- 
beam case. This unusual multiple reflection has already 
been reported by Hirshfeld (1955), but it will be shown 
here that his arguments about the influence of the 
mosaic spread of the crystal are not proved. 

Each wing is now being generated by the contri- 
bution of two pairs having opposite signs of their 
resulting amplitude (Fig. 6); consequently, they should 
at least be extinguished in the overlapping area of each 
of the two wings. As may be derived from Table 2, the 
angle between the two upper (or lower) wings should 
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(a) (b) 

Fig. 11. Weissenberg pictures of 500 reflections. (a) K9 (perfect). (b)K4 (imperfect). 
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differ by about 20 ° , this angular deviation should be 
observable. We have very carefully checked the 
numerous photographs available, but no such over- 
lapping effect between two wings could be detected 
even in crystals with a large mosaic spread. Thus, we 
have either to conclude that both primary beams form 
a single wave field in the interior of the crystal or only 
one reflection contributes to it. Since the kinematic 
solution of the diffraction problem tells us that either 
both 310 and 210 or none of them meet the Ewald 
sphere simultaneously with 500, it is most probable that 
both of them contribute to the multiple diffraction. So 
why does the common wave field show no complete 
extinction? The reader will easily verify from the 
discussion above that even in a mosaic block both 
waves should be extinguished by interference. Hence, 
the only possible explanation for the strong enhance- 
ment of the 500 reflection with increasing mosaic 

spread could be given by assuming that the diffraction 
condition of multiple scattering is obeyed only approxi- 
mately. Furthermore, we started with the erroneous 
assumption that the wave field may be represented by a 
single plane wave, but this naturally does not hold for 
the primary and secondary wave dying out in a thick 
crystal because of their contributions to the total wave 
field becoming increasingly 'small' with increasing 
length of their path within the crystal. Deviations from 
the exact Bragg condition result in phase changes of the 
spherical waves, hence, interference patterns are pos- 
sible. Therefore, the interference phenomena may be 
changed as pointed out above; it is not clear whether 
the excitation conditions to be determined by construct- 
ing the complicated system of dispersion surfaces are 
really satisfied. If they are not, then the excitation in a 
very perfect crystal does not take place, but it certainly 
does so in an imperfect one as an incoherent scattering 

. .  ~ . ~ - ~ ' .  -: ~ / ~ '  

(a) 

(b) 

Fig. 12. 10 ° oscillation strictly monochromatic  and focused. ( a )K9  (perfect). (b)K4 (imperfect) (~ '  -~ 70 ° !). Magnification 20×. 
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process. For this reason we cannot expect that 500 
gives a diffraction pattern which can easily be 
interpreted. That this assumption may be correct can 
be derived from Fig. 11, where the part of a 
Weissenberg pattern relevant for the 500 secondary 
reflection is shown for two different crystals: one of 
them is our most perfect crystal K9, showing no sign of 
the secondary reflection, while the second picture is 
taken with the very imperfect crystal K4, showing that 
the secondary 500 is comparable in intensity with 
primary reflections of medium intensity. A comparison 
between Figs. 8 and 11 clearly reveals the difference in 
the influence of the mosaic structure. 11,0,2 is nearly 
uninfluenced since the same approximate exposure time 
was allowed for both pictures. The big difference in the 
intensity of the 500 reflection is demonstrated once 
more in Fig. 12, showing a 10 ° oscillation picture for 
the very perfect crystal K9 and the imperfect one K4. It 

should be noted that the secondary reflection is not 
affected (point of the arrowhead sharp) by the 
condition of focusing, which is not satisfactory in the 
case of the K4 diffraction picture. Two diffraction 
pictures of 500 and 500 of the same crystal, K l l ,  in 
Fig. 13, show very distinctly that the shape of the two 
spots is different, even in the case of a certain mosaic 
spread. This has nothing to do with the invalidity of 
Friedel's law, it is just a consequence of the two 
physically_different situations for reflecting the group 
500 and 500, generated by rotating the Ewald sphere 
by 37 °. 

The big difference in the propagation of waves within 
the crystal is shown in a series of pictures taken by the 
Noromosic technique. Each one of them differs by a 
rotation of 0.5 ° . The large azimuthal angle prevents 
important information of the diffraction pattern being 
lost. The three crystals, K9 (perfect), K 10 (less perfect) 

(a) 

.'* . " 

9 

(b) 

Fig. 13. 10 ° oscillation picture (compare with Fig. 12) of Kl  1. (a) 500 and 600. (b) 500 and 600. Magnification 20×. 



H. J A G O D Z I N S K I  115 

and K11 (rather imperfect), clearly show that these 
interference effects are sensitive to the mosaic structure 
of the crystals. Fig. 14(a), (b) shows pictures of the 500 
reflection, while Fig. 14(c) shows the 500 reflection. It 

should be pointed out that 500 of K14 was not very 
different from the one given in Fig. 14(b), therefore it 
has been omitted here. The physically different diffrac- 
.tion for 500 and 500 may easily be seen. This is again 
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(a) O) (e) 

Fig. 14. Series of photographs in the Noromosic technique differing by 0.5 ° angular setting. (a) K9, 500 (perfect). (b) K 10, 200 (medium 
quality). (c)K 11, 500 (medium). Magnification 18 x. 
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supported by the oscillation picture showing 500 and 
500 in Fig. 13. 

No attempt will be made in this paper to give a full 
theoretical interpretation of the various diffraction 
phenomena. Obviously this is impossible as long as the 
correct diffraction condition has not been realized, 
which can only be done either by changing the wave- 
length of the monochromatic radiation (valid in the 
cases of multiple diffraction 1-]-,0,2, "703, 804, 304), or 
by varying the lattice constants (to be done for 500, 
802). Consequently, completely new equipment is 
needed. On the other hand, it will be advisable to use 
strictly monochromatized and polarized radiation in 
order to simplify the influence of polarization, which 
has not been discussed here since it is unnecessary in 
those cases where the reflections involved belong to the 
same zone and all waves have the same plane of 
incidence. 

Unfortunately, the indices of some of the planes 
relevant to secondary reflections are most probably 
incorrect in the previous short communication (Jagod- 
zinski, 1978), since their intensities could not be 
checked on account of the data available. This 
difficulty arises from the inaccuracy of the diffraction 
condition for reflections on other but the zero layer line, 
because of the large horizontal and vertical angles of 
aperture. This problem has to be solved with the aid of 
more precise diffraction geometry. 

The author thanks the Deutsche Forschungs- 
gemeinschaft for generously supplying X-ray equip- 
ment. Technical assistance in taking and evaluating 
diffraction pictures by Mrs Oppermann and Mrs 
Schmidt, and reproduction of magnified copies of X- 
ray patterns by Mr Gappa are gratefully acknow- 
ledged. 

References 

COLLELA, R. (1974). Acta Cryst. A30, 413-423. 
EWALD, P. P. & Hi'NO, Y. (1968).Acta Cryst. A24, 5-15. 
HAUSSER, K. H. (1979). Private communication. 
HI'NO, Y. & EWALD, P. P. (1968). Acta Cryst. A24, 16-42. 
HERBSTEIN, F. H. St. SCHMIDT, G. M. J. (1955a). Acta Cryst. 

8, 399-405. 
HERBSTEIN, F. H. & SCHMIDT, G. M. J. (1955b). Acta Cryst. 

8, 406-412. 
HIRSHFELD, F. L. (1955). Acta Cryst. 8, 439-440. 
HUANG, T. C. & POST, B. (1973). Acta Cryst. A29, 35-37. 
JAGODZINSKI, H. (1968). Acta Cryst. B24, 19-23. 
JAGODZINSKI, H. (1978). Naturwissenschaften, 65, 651-652. 
KSHEVETSKY, S. A. & MmrtAILVUK, I. P. (1976). 

Kristallografiya, 21, 381-382. 
POST, B. (1975). Acta Cryst. A31, 153-155. 
POST, B. (1979). Acta Cryst. A35, 17-21. 
RENNINGER, M. (1978). Z. Kristallogr. 147, 5-11. 
SCHUCH, H., STEHLIK, D. & HAUSSER, K. H. (1971). Z. 

Naturforsch. Teil A, 26, 1944-1969. 

Acta Cryst. (1980). A36, 116-122 

Disorientation Between Any Two Lattices 

BY R. BONNET 

L TPCM, ENSEEG, BP 44, 38401 Saint Martin d'H&es, France 

(Received 9 February 1979; accepted 25 July 1979) 

Abstract 

The concept of disorientation, previously used for 
studying the statistical distribution of the relative 
orientation of identical cubic crystals, is defined in this 
work for any two lattices. Using the proposed 
definition, an algorithm is presented, allowing all the 
known relative orientations between the two lattices to 
be conveniently classed. As an example, a unified 
classification of the numerous mutual orientations of 
the A1 and CuA12 crystals is suggested. The unit 
quaternion method used by Grimmer [Acta Cryst. 
(1974), A30, 685-688] for identical cubic lattices is 
here proved efficient for discussing the pair axis/angle 
disorientations in more complicated cases: cubic 

0567-7394/80/010116-07501.00 

1/cubic 2; tetragonal 1/tetragonal 2; hexagonal 1/hex- 
agonal 2; cubic/tetragonal; cubic/orthorhombic and 
cubic/hexagonal. The general expressions of equivalent 
quaternions are given for any point group of lattice 1 or 
lattice 2. 

1. Introduction 

In a preceding paper, Bonnet & Cousineau (1977)pre- 
sented results concerning a numerical method used to 
find the relative orientations of two equal or different 
lattices 1 and 2, such that two small multiple cells M 1 
and M2 are coincident or near-coincident to within a 
small deformation. Their results were classified in 
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